Understanding the control of movement requires an awareness of how tasks constrain movements. The present study investigated the effects of two types of task constraints--spatial accuracy (effector size) and target location--on reaching kinematics. 15 right-handed healthy young adults (7 men, 8 women) whose mean age was 23.6 yr. (SD=3.9 yr.) performed the ringing task under six conditions, formed by the crossing of effector size (larger vs smaller size) and target location (left, right, or a central position). Significant main effects of effector size and target location were found for peak velocity and movement time. There was a significant interaction for the percentage of time to peak velocity. The findings suggested that task constraints may modulate movement performance in specific ways. Effects of effector size might be a consequence of feedforward and feedback control, and location effects might be influenced by both biomechanical and neurological factors.