We describe methods for broad characterization of the human plasma proteome. The combination of stepwise immunoglobulin G (IgG) and albumin protein depletion by affinity chromatography and ultrahigh-efficiency capillary liquid chromatography separations coupled to ion trap-tandem mass spectrometry enabled identification of 2392 proteins from a single plasma sample with an estimated confidence level of > 94%, and an additional 2198 proteins with an estimated confidence level of 80%. The relative abundances of the identified proteins span a range of over eight orders of magnitude in concentration (< 30 pg/mL to approximately 30 mg/mL), facilitated by the attomole-level sensitivity of the analysis methods. More than 80% of the observed proteins demonstrate interactions with IgG and/or albumin, and the human plasma protein loss in the affinity chromatography/strong cation exchange/reversed-phase liquid chromatography-tandem mass spectrometry methodology was investigated in detail. The results of this study provide a basis for a wide range of plasma proteomics studies, including broad quantitation of relative abundances in comparative studies of the identification of novel protein disease markers, as well as further studies of protein-protein interactions.