Mimics of the benzimidazolone nucleus found in inhibitors of p38 kinase are proposed, and their theoretical potential as bioisosteres is described. A set of calculated descriptors relevant to the anticipated binding interaction for the fragments 1-methyl-1H-benzotriazole 5, 3-methyl-benzo[d]isoxazole 3, and 3-methyl-[1,2,4]triazolo[4,3-a]pyridine 4, pyridine 1, and 1,3-dimethyl-1,3-dihydro-benzoimidazol-2-one 2 are reported. The design considerations and synthesis of p38 inhibitors based on these H-bond acceptor fragments is detailed. Comparative evaluation of the pyridine-, benzimidazolone-, benzotriazole-, and triazolopyridine-based inhibitors shows the triazoles 20 and 25 to be significantly more potent experimentally than the benzimidazolone after which they were modeled. An X-ray crystal structure of 25 bound to the active site shows that the triazole group serves as the H-bond acceptor but unexpectedly as a dual acceptor, inducing movement of the crossover connection of p38alpha. The computed descriptors for the hydrophobic and pi-pi interaction capacities were the most useful in ranking potency.