Conjugates between methotrexate (MTX, Matrex, N-[4-[[(2,4-diamino-6-pteridinyl)methyl]methylamino]benzoyl]-l-glutamic acid), an antifolate cancer chemotherapeutic to which resistance is often observed, and motexafin gadolinium (MGd), an experimental agent demonstrating selective tumor localization, are described. These systems were prepared in order to test whether linking these two species would produce agents with enhanced activity relative to MTX alone. Both ester- and amide-linked conjugates were synthesized starting from MGd and MTX. The ester conjugate showed greater in vitro anti-proliferative activity against the A549 lung carcinoma cell line at short incubation times than did MTX alone. Neither the amide conjugate, nor MGd, showed any observable activity under these in vitro conditions. These results are rationalized in terms of enhanced cellular uptake of both the ester and amide conjugates that is coupled with an effective rate of release (e.g., inherent or enzyme-mediated hydrolysis) in the case of the ester-linked conjugate, but not the corresponding amide system.