Escherichia coli trigger factor (TF) and DnaK cooperate in the folding of newly synthesized proteins. The combined deletion of the TF-encoding tig gene and the dnaK gene causes protein aggregation and synthetic lethality at 30 degrees C. Here we show that the synthetic lethality of deltatigdeltadnaK52 cells is abrogated either by growth below 30 degrees C or by overproduction of GroEL/GroES. At 23 degrees C deltatigdeltadnaK52 cells were viable and showed only minor protein aggregation. Overproduction of GroEL/GroES, but not of other chaperones, restored growth of deltatigdeltadnaK52 cells at 30 degrees C and suppressed protein aggregation including proteins >/= 60 kDa, which normally require TF and DnaK for folding. GroEL/GroES thus influences the folding of proteins previously identified as DnaK/TF substrates.