Preparation and crystallization kinetics of new structurally well-defined star-shaped biodegradable poly(L-lactide)s initiated with diverse natural sugar alcohols

Biomacromolecules. 2005 Jul-Aug;6(4):2236-47. doi: 10.1021/bm050213m.

Abstract

This study presents syntheses, structural characterization, and crystallization kinetic investigation of new structurally well-defined star-shaped poly(l-lactide)s (PLLAs). First, a series of new 3- to 6-arm star-shaped PLLAs were synthesized through SnOct(2) catalyzed ring-opening polymerization of (l)-lactide with natural sugar alcohols of glycerol, erythritol, xylitol, and sorbitol as the favorable initiators. Subsequently, their chemical structures were characterized by means of GPC, NMR, and viscometer with respect to the star-shaped structures, demonstrating the well-defined arm structures as evidenced on the g(1/2)/g' values, where g and g' denote the ratios of mean-square radius of gyration and intrinsic viscosity of a star-shaped polymer to those of a linear structural reference with similar absolute molecular weight. Furthermore, spherulite morphologies and growth rates were studied by a polarized microscopy (POM) for the synthesized star-shaped PLLAs with different molecular weights, and it was found that the more arms of a star-shaped PLLA finally resulted in a lower spherulite growth rate. With regard to the crystallization kinetics of these star-shaped PLLAs, isothermal and nonisothermal crystallization were examined by differential scanning calorimeter (DSC). It was found that Avrami exponent n values of isothermal crystallization were almost independent of the isothermal crystallization temperature T(c) for different series of star-shaped PLLAs. In contrast, the values of Avrami exponent n were observed to strongly depend on the star-shaped structures with different arms, implying their distinct nucleation mechanisms, and the more arms of a star-shaped PLLA led to a slower isothermal crystallization rate. On the basis of a modified Avrami equation, new light was shed on the nonisothermal crystallization kinetics for the star-shaped PLLAs, and the activation energies were found to vary from 146.86 kJ/mol for the linear PLLA EG-3 to 221.23 kJ/mol of the star-shaped S-3, demonstrating much decreased crystallizabilities of star-shaped PLLAs with more arms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodegradation, Environmental
  • Chromatography, Gel
  • Crystallization
  • Kinetics
  • Magnetic Resonance Spectroscopy
  • Molecular Structure
  • Polyesters / chemistry*
  • Sugar Alcohols / chemistry*
  • Viscosity

Substances

  • Polyesters
  • Sugar Alcohols
  • poly(lactide)