Formation of calcium phosphate (Ca-P) on various bioceramic surfaces in simulated body fluid (SBF) and in rabbit muscle sites was investigated. The bioceramics were sintered porous solids, including bioglass, glass-ceramics, hydroxyapatite, alpha-tricalcium phosphate and beta-tricalcium phosphate. The ability of inducing Ca-P formation was compared among the bioceramics. The Ca-P crystal structures were identified using single-crystal diffraction patterns in transmission electron microscopy. The examination results show that ability of inducing Ca-P formation in SBF was similar among bioceramics, but considerably varied among bioceramics in vivo. Sintered beta-tricalcium phosphate exhibited a poor ability of inducing Ca-P formation both in vitro and in vivo. Octacalcium phosphate (OCP) formed on the surfaces of bioglass, A-W, hydroxyapatite and alpha-tricalcium phosphate in vitro and in vivo. Apatite formation in physiological environments cannot be confirmed as a common feature of bioceramics.