Nuclear factor kappaB (NF-kappaB) is an ubiquitous transcription factor and pleiotropic regulator of numerous inflammatory and immune responses. Once activated, NF-kappaB translocates from the cytosol to the nucleus of the cell, where it binds to its consensus sequence on the promoter-enhancer region of different genes. By so doing, this activates the transcription of a variety of different pro-inflammatory cytokines, adhesion molecules and specific enzymes, such as the inducible forms of nitric oxide synthase and cyclooxygenase. A number of different cytokines, bacterial products and oxidants activate NF-kappaB via selective phosphorlyation, polyubiquitination and degradation of the inhibitor protein, IkappaB. Since the 26S proteasome complex degrades the post-translationally modified IkappaB, thereby liberating the transcriptionally active p50/p65 heterodimeric NF-kappaB, this proteolytic complex represents a critical step in the activation of NF-kappaB. This review discusses the basic biology of the ubiquitin-proteasome pathway as it relates to the inflammatory response, and highlights those studies demonstrating that selective proteasome inhibitors are effective anti-inflammatory agents in vivo.