Electroporation is an effective alternative to viral methods to significantly improve DNA transfection after intradermal and topical delivery. The aim of the study was to check whether a combination of a short high-voltage pulse (HV) to permeabilize the skin cells and a long low-voltage pulse (LV) to transfer DNA by electrophoresis was more efficient to enhance DNA expression than conventional repeated HV or LV pulses alone after intradermal injection of DNA plasmid. GFP and luciferase expressions in the skin were enhanced by HV+LV protocol as compared to HV or LV pulses alone. The expression lasted for up to 10 days. Consistently, HV+LV protocol induced a higher Th2 immune response against ovalbumin than HV or LV pulses. Standard methods were used to assess the effect of electric pulses on skin: the application of a combination of HV and LV pulses on rat skin fold delivered by plate electrodes was well tolerated. These data demonstrate that a combination of one HV (700 to 1000 V/cm; 100 micros) followed by one LV (140 to 200 V/cm; 400 ms) is an efficient electroporation protocol to enhance DNA expression in the skin.