CisMols Analyzer: identification of compositionally similar cis-element clusters in ortholog conserved regions of coordinately expressed genes

Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W408-11. doi: 10.1093/nar/gki486.

Abstract

Combinatorial interactions of sequence-specific trans-acting factors with localized genomic cis-element clusters are the principal mechanism for regulating tissue-specific and developmental gene expression. With the emergence of expanding numbers of genome-wide expression analyses, the identification of the cis-elements responsible for specific patterns of transcriptional regulation represents a critical area of investigation. Computational methods for the identification of functional cis-regulatory modules are difficult to devise, principally because of the short length and degenerate nature of individual cis-element binding sites and the inherent complexity that is generated by combinatorial interactions within cis-clusters. Filtering candidate cis-element clusters based on phylogenetic conservation is helpful for an individual ortholog gene pair, but combining data from cis-conservation and coordinate expression across multiple genes is a more difficult problem. To approach this, we have extended an ortholog gene-pair database with additional analytical architecture to allow for the analysis and identification of maximal numbers of compositionally similar and phylogenetically conserved cis-regulatory element clusters from a list of user-selected genes. The system has been successfully tested with a series of functionally related and microarray profile-based co-expressed ortholog pairs of promoters and genes using known regulatory regions as training sets and co-expressed genes in the olfactory and immunohematologic systems as test sets. CisMols Analyzer is accessible via a Web interface at http://cismols.cchmc.org/.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Binding Sites
  • Conserved Sequence
  • Gene Expression Regulation*
  • Genomics / methods
  • Internet
  • Response Elements*
  • Software*
  • Transcription Factors / metabolism*
  • User-Computer Interface

Substances

  • Transcription Factors