Functional brain imaging of tobacco use and dependence

J Psychiatr Res. 2006 Aug;40(5):404-18. doi: 10.1016/j.jpsychires.2005.04.012. Epub 2005 Jun 24.

Abstract

While most cigarette smokers endorse a desire to quit smoking, only about 14% to 49% will achieve abstinence after 6 months or more of treatment. A greater understanding of the effects of smoking on brain function may (in conjunction with other lines of research) result in improved pharmacological (and behavioral) interventions. Many research groups have examined the effects of acute and chronic nicotine/cigarette exposure on brain activity using functional imaging; the purpose of this paper is to synthesize findings from such studies and present a coherent model of brain function in smokers. Responses to acute administration of nicotine/smoking include: a reduction in global brain activity; activation of the prefrontal cortex, thalamus, and visual system; activation of the thalamus and visual cortex during visual cognitive tasks; and increased dopamine (DA) concentration in the ventral striatum/nucleus accumbens. Responses to chronic nicotine/cigarette exposure include decreased monoamine oxidase (MAO) A and B activity in the basal ganglia and a reduction in alpha4beta2 nicotinic acetylcholine receptor (nAChR) availability in the thalamus and putamen. Taken together, these findings indicate that smoking enhances neurotransmission through cortico-basal ganglia-thalamic circuits either by direct stimulation of nAChRs, indirect stimulation via DA release or MAO inhibition, or a combination of these factors. Activation of this circuitry may be responsible for the effects of smoking seen in tobacco dependent subjects, such as improvements in attentional performance, mood, anxiety, and irritability.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Brain / physiopathology*
  • Brain Mapping / methods*
  • Cognition / physiology
  • Dopamine / physiology
  • Humans
  • Personality
  • Receptors, Nicotinic / physiology
  • Smoking / physiopathology
  • Tobacco Use Disorder / physiopathology*
  • Tobacco Use Disorder / psychology

Substances

  • Receptors, Nicotinic
  • Dopamine