Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor

Biotechnol Bioeng. 2005 Aug 5;91(3):325-37. doi: 10.1002/bit.20473.

Abstract

Fed-batch fermentations of glucose by P. acidipropionici ATCC 4875 in free-cell suspension culture and immobilized in a fibrous-bed bioreactor (FBB) were studied. The latter produced a much higher propionic acid concentration (71.8 +/- 0.8 g/L vs. 52.2 +/- 1.1 g/L), indicating enhanced tolerance to propionic acid inhibition by cells adapted in the FBB. Compared to the free-cell fermentation, the FBB culture produced 20-59% more propionate (0.40-0.65 +/- 0.02 g/g vs. 0.41 +/- 0.02 g/g), 17% less acetate (0.10 +/- 0.01 g/g vs. 0.12 +/- 0.02 g/g), and 50% less succinate (0.09 +/- 0.02 g/g vs. 0.18 +/- 0.03 g/g) from glucose. The higher propionate production in the FBB was attributed to mutations in two key enzymes, oxaloacetate transcarboxylase and propionyl CoA: succinyl CoA transferase, leading to the production of propionic acid from pyruvate. Both showed higher specific activity and lower sensitivity to propionic acid inhibition in the mutant than in the wild type. In contrast, the activity of PEP carboxylase, which converts PEP directly to oxaloacetate and leads to the production of succinate from glucose, was generally lower in the mutant than in the wild type. For phosphotransacetylase and acetate kinase in the acetate formation pathway, however, there was no significant difference between the mutant and the wild type. In addition, the mutant had a striking change in its morphology. With a threefold increase in its length and approximately 24% decrease in its diameter, the mutant cell had an approximately 10% higher specific surface area that should have made the mutant more efficient in transporting substrates and metabolites across the cell membrane. A slightly lower membrane-bound ATPase activity found in the mutant also indicated that the mutant might have a more efficient proton pump to allow it to better tolerate propionic acid. In addition, the mutant had more longer-chain saturated fatty acids (C17:0) and less unsaturated fatty acids (C18:1), both of which could decrease membrane fluidity and might have contributed to the increased propionate tolerance. The enhanced propionic acid production from glucose by P. acidipropionici was thus attributed to both a high viable cell density maintained in the reactor and favorable mutations resulted from adaptation by cell immobilization in the FBB.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Triphosphatases / metabolism
  • Bioreactors*
  • Biotechnology / methods*
  • Cell Membrane / enzymology
  • Cells, Immobilized / enzymology
  • Fermentation
  • Mutation
  • Propionates / metabolism*
  • Propionibacterium / enzymology*
  • Propionibacterium / genetics*

Substances

  • Propionates
  • Adenosine Triphosphatases
  • propionic acid