The subventricular germinal zone (SVZ) retains an active population of stem cells and neural precursor cells throughout adulthood. EphrinB signaling mediates angiogenesis and vasculogenesis in the developing and adult brain. Recent studies indicate that molecules involved in angiogenesis often influence neurogenesis as well. However, little work has been done considering a role for EphB2/EphrinB in adult neural precursor cells. We therefore examined whether the EphB2 receptor tyrosine kinase could directly effect proliferation of SVZ neural precursors and/or direct the cell fate of SVZ cells in vitro. Here, we found that clustered EphB2 increased bromodeoxyuridine (BrdU) incorporation and proliferation of SVZ neurosphere cultures. Immunostaining and RT-PCR analysis for beta-tubulin III (Tuj1) and GFAP indicated 4-day treatment with EphB2 promoted a neuronal phenotype, suggesting that the EphB2 receptor might also direct SVZ cell fate. EphB2 transiently down-regulated SVZ cell mRNA of Notch1 and Zic1, genes that regulate neurogenesis and neuronal differentiation. Notch1 has been implicated in apoptosis of neural precursors, however, a cell viability assay revealed no statistical difference between EphB2-treated and control cultures. When SVZ neurospheres were cultured upon Matrigel, EphB2 attenuated radial migration of SVZ cells in vitro. These results demonstrate that EphB2/EphrinB signaling directly induces SVZ proliferation, decreases migration, and promotes a neuronal fate of SVZ neural precursors independent of cell survival.