Introduction and objectives: Myocardial contrast echocardiography (MCE) is useful for predicting the functional recovery of akinetic segments in patients undergoing primary angioplasty after acute myocardial infraction (AMI). Recently, parametric imaging-based quantitative MCE has been developed for measuring perfusion. Our aims were: a) to measure perfusion in akinetic myocardial segments in patients undergoing primary angioplasty using parametric imaging-based quantitative MCE; and b) to assess the usefulness of these measurements in predicting functional recovery of these segments.
Patients and method: The study group comprised 49 consecutive patients undergoing primary angioplasty. Both MCE and standard echocardiography were performed between 2 and 5 days after AMI. Six months later, additional standard echocardiography and coronary angiography were performed. Perfusion was quantified independently off-line from parametric images.
Results: The patients' mean age was 62.3+/-14.5 years (39 men; 79.2%). Some 170 akinetic segments were detected. Of these, 105 (62.1%) recovered function. The quantitative MCE parameter that best predicted functional recovery was myocardial blood flow velocity (beta): the area under the receiver operating characteristic (ROC) curve was 0.96 (95% CI, 0.92-0.99). For a cut-off point of 31 dB/s, the sensitivity was 87.62%, the specificity was 95.31%, the positive predictive value was 96.8%, and the negative predictive value was 82.43%. These results were better than those obtained using qualitative methods for assessing myocardial perfusion.
Conclusions: Perfusion measurement by parametric imaging-based quantitative MCE is useful for predicting the functional recovery of akinetic segments in patients undergoing primary angioplasty after AMI. The technique provides superior information to older qualitative methods.