The triterpene mixture, alpha- and beta-amyrin, isolated from Protium heptaphyllum resin was evaluated on capsaicin-evoked nociception in mice. Orally administered alpha- and beta-amyrin (3 to 100 mg/kg) significantly suppressed the nociceptive behaviors--evoked by either subplantar (1.6 microg) or intracolonic (149 microg) application of capsaicin. The antinociception produced by alpha- and beta-amyrin against subplantar capsaicin-induced paw-licking behavior was neither potentiated nor attenuated by ruthenium red (1.5 mg/kg, s.c.), a non-specific antagonist of vanilloid receptor (TRPV1), but was greatly abolished in animals pretreated with naloxone (2 mg/kg, s.c.), suggesting an opioid mechanism. However, participation of alpha2-adrenoceptor involvement was unlikely since yohimbine (2 mg/kg, i.p.) pretreatment failed to block the antinociceptive effect of alpha- and beta-amyrin in the experimental model of visceral nociception evoked by intracolonic capsaicin. The triterpene mixture (3 to 30 mg/kg, p.o.) neither altered significantly the pentobarbital sleeping time, nor impaired the ambulation or motor coordination in open-field and rota-rod tests, respectively, indicating the absence of sedative or motor abnormality that could account for its antinociception. Nevertheless, alpha- and beta-amyrin could significantly block the capsaicin (10 mg/kg, s.c.)-induced hyperthermic response but not the initial hypothermia. These results suggest that the triterpene mixture, alpha- and beta-amyrin has an analgesia inducing effect, possibly involving vanilloid receptor (TRPV1) and an opioid mechanism.