Ca2+ sparks and waves in canine purkinje cells: a triple layered system of Ca2+ activation

Circ Res. 2005 Jul 8;97(1):35-43. doi: 10.1161/01.RES.0000173375.26489.fe. Epub 2005 Jun 9.

Abstract

We have investigated the subcellular spontaneous Ca2+ events in canine Purkinje cells using laser scanning confocal microscopy. Three types of Ca2+ transient were found: (1) nonpropagating Ca2+ transients that originate directly under the sarcolemma and lead to (2) small Ca2+ wavelets in a region limited to 6-microm depth under the sarcolemma causing (3) large Ca2+ waves that travel throughout the cell (CWWs). Immunocytochemical studies revealed 3 layers of Ca2+ channels: (1) channels associated with type 1 IP3 receptors (IP3R1) and type 3 ryanodine receptors (RyR3) are prominent directly under the sarcolemma; (2) type 2 ryanodine receptors (RyR2s) are present throughout the cell but virtually absent in a layer between 2 and 4 microm below the sarcolemma (Sub-SL); (3) type 3 ryanodine receptors (RyR3) is the dominant Ca2+ release channel in the Sub-SL. Simulations of both nonpropagating and propagating transients show that the generators of Ca2+ wavelets differ from those of the CWWs with the threshold of the former being less than that of the latter. Thus, Purkinje cells contain a functional and structural Ca2+ system responsible for the mechanism that translates Ca2+ release occurring directly under the sarcolemma into rapid Ca2+ release in the Sub-SL, which then initiates large-amplitude long lasting Ca2+ releases underlying CWWs. The sequence of spontaneous diastolic Ca2+ transients that starts directly under the sarcolemma and leads to Ca2+ wavelets and CWWs is important because CWWs have been shown to cause nondriven electrical activity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Channels / analysis
  • Diffusion
  • Dogs
  • Inositol 1,4,5-Trisphosphate Receptors
  • Purkinje Cells / metabolism*
  • Receptors, Cytoplasmic and Nuclear / analysis
  • Ryanodine Receptor Calcium Release Channel / analysis

Substances

  • Calcium Channels
  • Inositol 1,4,5-Trisphosphate Receptors
  • Receptors, Cytoplasmic and Nuclear
  • Ryanodine Receptor Calcium Release Channel
  • Calcium