The histamine H(4) receptor (H(4)R) is involved in the chemotaxis of leukocytes and mast cells to sites of inflammation and is suggested to be a potential drug target for asthma and allergy. So far, selective H(4)R agonists have not been identified. In the present study, we therefore evaluated the human H(4)R (hH(4)R) for its interaction with various known histaminergic ligands. Almost all of the tested H(1)R and H(2)R antagonists, including several important therapeutics, displaced less than 30% of specific [(3)H]histamine binding to the hH(4)R at concentrations up to 10 microM. Most of the tested H(2)R agonists and imidazole-based H(3)R ligands show micromolar-to-nanomolar range hH(4)R affinity, and these ligands exert different intrinsic hH(4)R activities, ranging from full agonists to inverse agonists. Interestingly, we identified 4-methylhistamine as a high-affinity H(4)R ligand (K(i) = 50 nM) that has a >100-fold selectivity for the hH(4)R over the other histamine receptor subtypes. Moreover, 4-methylhistamine potently activated the hH(4)R (pEC(50) = 7.4 +/- 0.1; alpha = 1), and this response was competitively antagonized by the selective H(4)R antagonist JNJ 7777120 [1-[(5-chloro-1H-indol-2-yl)-carbonyl]-4-methylpiperazine] (pA(2) = 7.8). The identification of 4-methylhistamine as a potent H(4)R agonist is of major importance for future studies to unravel the physiological roles of the H(4)R.