The thalamic connections of the second somatosensory area in the anterior ectosylvian gyrus of cats have been investigated using the retrograde tracer horseradish peroxidase and the anterograde tracer Phaseolus vulgaris leucoagglutinin. Horseradish peroxidase was injected iontophoretically in several somatotopic zones of the second somatosensory area map of six cats. Sites of horseradish peroxidase delivery were identified preliminarily by recording with microelectrodes the responses of neurons to skin stimulation. Phaseolus vulgaris leucoagglutinin was iontophoretically injected within the ventrobasal complex (one cat) or in the posterior complex (one cat). Horseradish peroxidase injections into cytoarchitectonic area SII retrogradely labeled neurons in the ipsilateral ventrobasal complex and in the posterior complex. Counts of labeled neurons from the ipsilateral thalamus showed that the overwhelming majority of horseradish peroxidase-labeled neurons were in the ventrobasal complex (96.3-96.9%) and few were in the posterior complex (3.1-3.7%). Neurons labeled in the ventrobasal complex were observed throughout the anteroposterior extent of the nucleus, while their mediolateral distribution varied with the site of horseradish peroxidase delivery in the body map of the second somatosensory area, which indicates that the projections from the ventrobasal complex to the second somatosensory area are somatotopically organized. In the cat in which the horseradish peroxidase injection involved both the second somatosensory area proper and the second somatosensory area medial, which lies in the lower bank of suprasylvian sulcus, labeled neurons were almost as numerous in the ventrobasal complex as in the posterior complex. Phaseolus vulgaris leucoagglutinin injected in the ventrobasal complex anterogradely labeled thalamocortical fibers in the ipsilateral anterior ectosylvian gyrus. In this case, patches of labeled fibers and terminals were distributed exclusively within the cytoarchitectonic borders of the second somatosensory area proper. Labeled terminals were numerous in layer IV and lower layer III, but terminal boutons and fibers with axonal swellings, probably forming synapses en passant, were frequently observed also in layers VI and I. Injection of Phaseolus vulgaris leucoagglutinin in the posterior complex labeled thalamocortical fibers in two distinct regions in the ipsilateral anterior ectosylvian gyrus, one lying laterally and the other medially, which correspond, respectively, to the fourth somatosensory area and the second somatosensory area medial. In both areas the densest plexus of labeled fibers and axon terminals was in layer IV and lower layer III, but numerous labeled fibers and terminals were also observed in layer I. In this case, only rare fragments of labeled fibers were present in second somatosensory area proper, but no labeled terminals could be observed.