In terms of refractive-index ellipsoid of a uniaxial crystal, the relationship between the diffraction efficiency of a volume grating and the polarization state of a readout beam is theoretically analyzed. The direction of a refractive light beam and the corresponding refractive-index modulation will both be changed by a variation of the polarization state. In the polarization state of the readout beam, which may lead to a strong variation in the diffraction efficiency of the volume grating. This kind of polarization-dependent diffraction efficiency of a volume grating in an anisotropic crystal is extremely disadvantageous for some applications. A method to suppress the polarization-dependent diffraction efficiency by use of double volume gratings is presented, and experiments with LiNbO3:Fe crystal are also demonstrated. The experimental results indicate that this method can well suppress the polarization-dependent diffraction efficiency of a volume grating. Furthermore, the diffraction properties of the double volume gratings are almost independent of the polarization state of the readout beam. The relative values of the diffraction peaks are calculated on the basis of the relationship between index modulation and the state of polarization. The experimental values are in good agreement with the theoretical analyses.