GIT1 (G protein-coupled receptor kinase-interacting protein 1) has been shown to regulate focal adhesion disassembly. We previously reported that GIT1 associates with MEK1 and acts as a scaffold to enhance ERK1/2 activation. Here, we show that GIT1 co-localizes with ERK1/2 in focal adhesions and regulates cell migration in vascular smooth muscle cells, HEK293 cells, and HeLa cells. Immunofluorescence showed that GIT1 co-localized with phospho-ERK1/2 in focal adhesions after epidermal growth factor stimulation. Because Src is required for both GIT1 tyrosine phosphorylation and focal adhesion disassembly, we studied the effects of Src on GIT1-ERK1/2 interactions. PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) inhibited association of GIT1 with ERK1/2, and their co-localization in focal adhesions was dramatically decreased in SYF-/- cells. GIT1 small interfering RNA significantly inhibited ERK1/2 recruitment to and activation in focal adhesions. GIT1 small interfering RNA and mutated GIT1 lacking the MEK1 binding domain significantly decreased epidermal growth factor-stimulated cell spreading and migration, suggesting that GIT1-mediated events such as ERK1/2 activation are required for spreading and migration. In summary, the present study further supports a key role for GIT1 (a MEK1-binding protein) as a scaffold for signal transduction in focal adhesions.