We have isolated an afsR homologue, called afsR-p, through genome analysis of Streptomyces peucetius ATCC 27952. AfsR-p shares 60% sequence identity with AfsR from Streptomyces coelicolor A3 (2). afsR-p was expressed under the control of the ermE* promoter in its hosts S. peucetius, Streptomyces lividans TK 24, Streptomyces clavuligerus and Streptomyces griseus. We observed overproduction of doxorubicin (4-fold) in S. peucetius, gamma-actinorhodin (2.6-fold) in S. lividans, clavulanic acid (1.5-fold) in S. clavuligerus and streptomycin (slight) in S. griseus. Overproduction was due to expression of the gene in these strains as compared to the wild-type strains harboring the vector only. Comparative study of the expression of afsR-p revealed that regulatory networking in Streptomyces is not uniform. We speculate that phosphorylated AfsR-p becomes bound to the promoter region of afsS. The latter activates other regulatory genes, including pathway regulatory genes, and induces the production of secondary metabolites including antibiotics. We identified specific conserved amino acids and exploited them for the isolation of the partial sequence of the afsR homologue from S. clavuligerus and Streptomyces achromogens (rubradirin producer). Such findings provide additional evidence for the presence of a serine/threonine and tyrosine kinase-dependent global regulatory network in Streptomyces.