Mathematical models were developed to predict time to inactivation (TTI) by high-pressure processing of Salmonella in Australian Valencia orange juice (pH 4.3) and navel orange juice (pH 3.7) as a function of pressure magnitude (300 to 600 MPa) and inoculum level (3 to 7 log CFU/ml). For each model, the TTI was found to increase with increasing inoculum level and decrease with increasing pressure magnitude. The U.S. Food and Drug Administration Juice Hazard Analysis and Critical Control Point Regulation requires fruit juice processors to include control measures that produce a 5-log reduction of the pertinent microorganism of public health significance in the juice. To achieve a 5-log reduction of Salmonella in navel orange juice at 20 degrees C, the models predicted hold times of 198, 19, and 5 s at 300, 450, and 600 MPa, respectively. In Valencia orange juice at 20 degrees C, a 5-log reduction of Salmonella was achieved in 369, 25, and 5 s at 300, 450, and 600 MPa, respectively. At pressures below 400 MPa, Salmonella was more sensitive to pressure in the more acidic conditions of the navel orange juice and TTIs were shorter. At higher pressures, little difference in the predicted TTI was observed. Refrigerated storage (4 degrees C) of inoculated navel orange juice treated at selected pressure/time/inoculum combinations showed that under conditions in which viable Salmonella was recovered immediately after high-pressure processing, pressure-treated Salmonella was susceptible to the acidic environment of orange juice or to chill storage temperature. These TTI models can assist fruit juice processors in selecting processing criteria to achieve an appropriate performance criterion with regard to the reduction of Salmonella in orange juice, while allowing for processing flexibility and optimization of high-pressure juice processing.