Deposition of atherogenic lipoproteins is associated with various glomerular diseases. In particular, oxidized LDL (oxLDL) may affect mesangial cells and favour the development of glomerulosclerosis. The aim of the present study was to investigate on cultured human mesangial cells (HMC) whether oxLDL induces apoptosis by a mechanism dependent on the inhibition of Akt survival pathway, and whether the engagement of mesangial CD40 by its ligand CD154 inhibits the apoptotic effect of oxLDL. Tunel assays demonstrated that incubation of HMC for 24 h with oxLDL, but not with unmodified LDL, induced a dose-dependent increase in apoptosis of HMC associated with a decrease in Akt phosphorylation. Enzymatic kinase assay showed that also the Akt activity was reduced in a dose-dependent manner by treatment with oxLDL. Stimulation of mesangial CD40 with sCD154 rescued HMC from oxLDL-dependent apoptosis, while two unrelated pharmacological inhibitors of PI3K LY294002 and wortmannin abrogated this anti-apoptotic effect, suggesting an involvement of the PI3K/Akt pathway. Moreover CD40 stimulation maintained an elevated phosphorylation of Akt and preserved its enzymatic activity in the presence of oxLDL. Indeed, CD154 induced a rapid enhancement in Akt enzymatic activity, that was temporarily correlated with the association of CD40 with TRAF3, TRAF6, c-Cbl and the p85 subunit of PI3K. In conclusion, these results suggest that CD40 stimulation protects HMC from toxic effects of oxLDL by promoting PI3K/Akt-dependent cell survival.