A five-isolate cocktail of Listeria monocytogenes (10(3) cfu/ml in skim or whole raw milk) was subjected to 450 MPa for 900 s or 600 MPa for 90 s. The effects of prior growth temperature, type of milk (skim vs. whole), type of recovery-enrichment media (optimized Penn State University [oPSU] broth, Listeria Enrichment Broth [LEB], Buffered LEB [BLEB], Modified BLEB [MBLEB], and milk), storage temperature and storage time on the recovery of L. monocytogenes were examined. Optimized PSU broth significantly increased the recovery of L. monocytogenes following high pressure processing (HPP), and was 63 times more likely to recover L. monocytogenes following HPP, compared to LEB, BLEB and MBLEB broths (p<0.05; Odds Ratio=63.09, C.I. 23.70-167.96). There was a significant main effect for prior growth temperature (p<0.05). However, this relationship could not be interpreted given the significant interaction effects between temperature and both pressure and milk type. HPP-injured L. monocytogenes could be recovered using both LEB and oPSU broths after storage of milk at 4, 15 and 30 degrees C, with recovery being maximal after 24 to 72 h of storage; however, recovery yield dropped to 0% after prolonged storage of milk at 4 and 30 degrees C. In contrast, storage of milk at 15 degrees C yielded the most rapid rate of recovery and the highest recovery yield (100%), which remained high throughout the 14 days of storage at 15 degrees C. The above factors need to be taken into consideration when designing challenge studies to insure complete inactivation of L. monocytogenes and possibly other foodborne pathogens during high pressure processing of foods.