The responses of a commercial diamond detector (type 60003, PTW-Freiburg) to several heavy ions were examined. The responses to heavy-ion beams reached stable levels with relatively small pre-irradiation doses compared to photon-beam irradiations. The responses also reached stable levels with a smaller pre-irradiation dose when the dose rate of the He beams was increased. A total accumulated dose of about 5 Gy was required for the pre-irradiation dose of heavy-ion beams. No angular dependence of the detector responses was observed within a deviation of 5%. The dose-rate dependence of the detector responses to heavy-ion beams was far smaller than that to gamma rays. The decrease in the response was within 0.9%, with a variation from 0.88 to 18.2 Gy min(-1) in the carbon beam. We examined the LET dependence of the diamond detector responses using various kinds of heavy-ion beams. The responses had particle dependence in addition to LET dependence. The responses decreased more with higher LET particles and decreased less with large-Z particles. We proposed a gradual-saturation model based on the track structure under several simple assumptions to explain the LET and particle dependences of the response.