Type 2 diabetes (T2D) has become a health-care problem worldwide, with the rise in disease prevalence being all the more worrying as it not only affects the developed world but also developing nations with fewer resources to cope with yet another major disease burden. Furthermore, the problem is no longer restricted to the ageing population, as young adults and children are also being diagnosed with T2D. In recent years, there has been a surge in the number of genetic studies of T2D in attempts to identify some of the underlying risk factors. In this review, I highlight the main genes known to cause uncommon monogenic forms of diabetes (e.g. maturity-onset diabetes of the young--MODY--and insulin resistance syndromes), as well as describe some of the main approaches used to identify genes involved in the more common forms of T2D that result from the interaction between environmental risk factors and predisposing genotypes. Linkage and candidate gene studies have been highly successful in the identification of genes that cause the monogenic variants of diabetes and, although progress in the more common forms of T2D has been slow, a number of genes have now been reproducibly associated with T2D risk in multiple studies. These are discussed, as well as the main implications that the diabetes gene discoveries will have in diabetes treatment and prevention.