Osteoporosis is a multifactorial disease involving genetic component and several environmental factors. Some rare diseases that are associated with osteoporosis such as Lobstein disease or the "pseudoglial osteoporosis" syndrom are monogenetic. Nevertheless common osteoporosis is a polygenic affection resulting from the interaction between the polymorphism of different genes and the environmental factors. The genetic component of osteoporosis encompasses roughly 60 to 70% of bone mineral density, whereas the effect on fracture risk seems lower because of the importance of other environmental factors as falls. Many polymorphisms of candidate genes involved in the regulation of bone mass have been correlated to bone density. It is likely that many genes participate to the regulation of bone density although the existence of a major gene is highly suspected. Moreover linkage analysis after genome-wide search in populations with severe osteoporosis has focused on some regions of interest (QTL) on the chromosomes. This will allow to localize one or more specific genes. The current genetic studies on different populations affected by osteoporosis or not will be useful in order to better predict the fracture risk in association with bone density and biochemical markers of bone turnover. Moreover, this will lead to the development of new treatments of osfeoporosis and will help to adapt the therapy for individual patients.