After ingestion of glucose both GIP (gastric inhibitory polypeptide, glucose-dependent insulinotropic polypeptide) and GLP-1(7-36amide) (glucagon-like polypeptide-1, 7-36amide) may play a physiological role in augmenting insulin release. Their insulinotropic effect was compared in isolated rat islets after 24-h maintenance in tissue culture (11 mmol l-1 glucose). Ten islets per vial were then incubated in Krebs-Ringer-Hepes buffer for 30 min; insulin was measured radioimmunologically. Both hormones were always compared in the same experiment. At 16.7 mmol l-1 glucose both GIP and GLP-1(7-36amide) 2 x 10(-10) mol l-1 significantly increased insulin release; 10(-10) mol l-1 of either hormone had no significant effect. The response at 10(-9) and 10(-8) mol l-1 was similar for both; at 4 x 10(-10) mol l-1 GLP-1(7-36amide), however, was clearly more effective than GIP. At low glucose (2.8 or 5.0 mol l-1) no significant differences were found. A concentration of 10(-8) mol l-1 of both hormones was slightly stimulatory. At 8.3 mmol l-1 glucose, 10(-9) mol l-1 GLP-1(7-36amide) was 60% more effective than GIP (4.8 +/- 0.4 vs. 3.0 +/- 0.4, n = 13, P less than 0.005), the response to 10(-8) mol l-1 was similar. These data show comparable effects of high concentrations of GIP and GLP-1(7-36amide) on glucose-induced insulin release; at presumably physiological concentrations, however, GLP-1(7-36amide) was clearly more effective. The combination of the two peptides was not more than additive, suggesting that they act via the same final mechanism.