Expression of Fas ligand (FasL) in tumors produced antitumor effects by generating both inflammation and T cell-mediated immunity, although the Fas/FasL interaction induces an apoptotic process of Fas-positive activated T cells. Our previous study, however, showed that immunization of mice with ultraviolet (UV)-treated FasL-expressing tumors rather induced immune suppression to the tumors, whereas mice rejected UV-untreated FasL-expressing tumors and developed protective immunity subsequently. Since dendritic cells (DCs) control tumor-specific immune responses in vivo, we examined a possible role of DCs in the immune suppression induced. Administration of DCs that were co-cultured with UV-treated FasL-expressing tumors did not influence the growth of parent tumors that were subsequently inoculated. Migration of immunocompetent cells into UV-treated FasL-expressing tumors was not significantly different from that into UV-untreated FasL-expressing tumors. However, production of immunosuppressive but not T helper type 1 cytokines was enhanced when UV-treated FasL-expressing tumors were administered. These data collectively suggest that the immune suppression induced by UV-treated FasL-expressing tumors was not attributable to tolerance of DCs, but due to cytokine-induced suppression of cell-mediated immunity.