The permeability of ions and small polar molecules through polyelectrolyte multilayer capsules templated on red blood cells was studied by means of confocal microscopy and electrorotation. Capsules were obtained by removing the cell after polyelectrolyte multilayer formation by means of NaOCl treatment. This procedure results in cross-linking of poly(allylamine hydrochloride) (PAH) molecules and destroying poly(styrene sulfonate) (PSS) within the multilayer. Capsules are obtained being remarkably different from layer-by-layer (LbL) capsules. These capsules are rather permeable for low as well as for high molecular weight species. However, upon adsorption of extra polyelectrolyte layers the permeability decreased remarkably. The assembly of six supplementary layers of PAH and PSS rendered the capsule almost impermeable for fluorescein. Resealing by supplementary layers is a potential means for filling and release control. By means of electrorotation measurements, it was shown that the capsule walls obtained isolating properties in electrolyte solutions. Conclusions are drawn concerning the mechanism of permeability through cell templated polyelectrolyte multilayer capsules.