Kallikrein and plasminogen activator (PA) are serine proteases that have been implicated in the ovulatory process. Epostane and indomethacin are anti-ovulatory agents that inhibit steroid and eicosanoid synthesis, respectively. This study examines the effects of these two anti-ovulatory agents on ovarian kallikrein and PA activities during ovulation. The proteases were assayed by their actions on chromogenic peptide substrates S-2266 and S-2251, respectively. The ovulatory process was induced in 25-day-old Wistar rats by giving them hCG (10 IU, s.c.) 2 days after the animals had been primed with eCG (10 IU, s.c.). Control animals ovulated approximately 60-70 ova/rat, with the first ova appearing in the oviducts at 10-12 h after hCG administration, and this was the same time ovarian kallikrein and PA activities reached a peak. When doses of epostane ranging from 0.1-5.0 mg/rat or doses of indomethacin ranging from 0.03 to 3.16 mg/rat were administered s.c. at 3 h after hCG, the two drugs inhibited ovulation and ovarian kallikrein and PA activities in a dose-dependent manner. However, the anti-ovulatory action of the two drugs was more closely correlated with suppression of kallikrein activity than with PA activity. Treatment of the animals with exogenous progesterone reversed the inhibitory action of epostane, but not of indomethacin. The results suggest that the increase in ovarian progesterone at the time of ovulation may influence ovarian kallikrein and PA activities.