Frailty models are often used to model heterogeneity in survival analysis. The most common frailty model has an individual intensity which is a product of a random factor and a basic intensity common to all individuals. This paper uses the compound Poisson distribution as the random factor. It allows some individuals to be non-susceptible, which can be useful in many settings. In some diseases, one may suppose that a number of families have an increased susceptibility due to genetic circumstances. Then, it is logical to use a frailty model where the individuals within each family have some shared factor, while individuals between families have different factors. This can be attained by randomizing the Poisson parameter in the compound Poisson distribution. To our knowledge, this is a new distribution. The power variance function distributions are used for the Poisson parameter. The subsequent appearing distributions are studied in some detail, both regarding appearance and various statistical properties. An application to infant mortality data from the Medical Birth Registry of Norway is included, where the model is compared to more traditional shared frailty models.