Three-dimensional projection reconstruction (3D PR)-based techniques are advantageous for steady-state free precession (SSFP) imaging for several reasons, including the capability to achieve short repetition times (TRs). In this paper, a multi-half-echo technique is presented that dramatically improves the data-sampling efficiency of 3D PR sequences while it retains this short-TR capability. The k-space trajectory deviations are measured quickly and corrected on a per-sample point basis. A two-pass RF cycling technique is then applied to the dual-half-echo implementation to generate fat/water-separated images. The resultant improvement in the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) was demonstrated in volunteer studies. Volumetric images with excellent spatial resolution, coverage, and contrast were obtained with high speed. The non-contrast-enhanced SSFP studies show that this technique has promising potential for MR angiography (MRA).
(c) 2005 Wiley-Liss, Inc.