Introduction: The New York City (NYC) Department of Health and Mental Hygiene (DOHMH) has operated a syndromic surveillance system based on emergency department (ED) chief-complaint data since November 2001. This system was created for early detection of infectious-disease outbreaks, either natural or intentional. However, limited documentation exists regarding epidemiologic field investigations conducted in response to syndromic surveillance signals.
Objective: DOHMH conducted field investigations to characterize syndromic surveillance signals by person, place, and time and to determine whether signals represented true infectious-disease outbreaks.
Methods: A DOHMH physician reviews ED-based syndromic surveillance results daily to look for signals. When necessary, field investigations are conducted and consist of a review of the patient line list, telephone interviews with hospital staff, chart reviews, interviews with patients, and collection and testing of specimens.
Results: In November 2002, a series of citywide signals for diarrhea and vomiting syndromes, which coincided with institutional outbreaks consistent with viral gastroenteritis, prompted DOHMH to send mass e-mail notification to NYC ED directors and institute collection of stool specimens. Three of four specimens collected were positive for norovirus. In December 2002, DOHMH investigated why an ED syndromic signal was not generated after 15 ill patients were transferred to a participating ED during a gastrointestinal outbreak at a nursing home. Field investigation revealed varying chief complaints, multiple dates of ED visits, and a coding error in a complementary DOHMH syndromic system, and confirmed a seasonal norovirus outbreak. During March 2003, the system generated a 4-day citywide respiratory signal and a simultaneous 1-day hospital-level fever signal in a predominantly Asian community. In those instances, epidemiologic investigation provided reassurance that severe acute respiratory syndrome was not present.
Conclusion: Detailed field investigations of syndromic signals can identify the etiology of signals and determine why a given syndromic surveillance system failed to detect an outbreak captured through traditional surveillance. Validation of the utility of syndromic surveillance to detect infectious-disease outbreaks is necessary to justify allocating resources for this new public health tool.