Endothelial progenitor cells (EPCs) participate in neovascularization and are consistent with postnatal vasculogenesis. In vitro, they differentiate into endothelial cells (ECs). Prior reports have suggested that circulating human AC133(+) cells have the capacity to differentiate into ECs as progenitor cells. However, recent studies have demonstrated that circulating CD34(-)CD14(+) cells also have EPC-like properties in vitro and in vivo. We tested whether AC133(-)CD14(+) cells from human umbilical cord blood (HUCB) have the potential to differentiate into ECs. The AC133(-)CD14(+) cells were isolated from HUCB by magnetic bead selection and cultured on fibronectin-coated six-well trays in M199 medium supplemented with fetal bovine serum (FBS), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin growth factor (IGF-1). The AC133(-)CD14(+) cells adhered slightly within 1 day of culture and subsequently underwent a distinct process of morphological transformation to spindle-shaped cells that sprouted from the edge of the cell clusters. After 14 days, the cells formed cord- and tubular-like structures. The AC133(-)CD14(+) cells showed a strong increase in the endothelial marker P1H12 over time, whereas CD14 decreased, and CD45 did not change, respectively. In addition, the cells expressed endothelial markers von Willebrand's factor (vWF), platelet/endothelial cell adhesion molecule-1 (PECAM-1), vascular endothelial growth factor receptor-1 (VEGFR-1)/Flt-1, VEGFR-2/Flk-1, eNOS, and VE-cadherin, but did not express Tie-2 after 7 days of culture. The present data indicate that AC133(-)CD14(+) cells from HUCB are able to develop endothelial phenotype with expression of endothelial-specific surface markers and even form cord- and tubular-like structures in vitro as progenitor cells.