We previously showed that intercellular adhesion molecule-1 (ICAM-1) expression by the host is essential for lymphoma dissemination. Because selectins usually act in a coordinated fashion with ICAM-1 in the recruitment of circulating normal cells, we investigated their implication in lymphomagenesis and metastasis. Using selectin-deficient mice, we found that though the absence of E-, P-, or L-selectins did not affect the triggering of radiation-induced thymic lymphoma, the absence of L-selectin on lymphoma cells reduced their capacity to grow in the thymus. This defect, however, was overcome by altering the integrity of the L-selectin-mediated interactions in the thymus, as shown in L-selectin-deficient mice and by adoptive transfer experiments. We also found that lack of selectin expression by the host significantly delayed the dissemination of lymphomas to peripheral tissues. This resistance of selectin-deficient mice to lymphoma metastasis was dependent on the intrinsic properties of lymphoma cells because highly tumorigenic variants were insensitive to the absence of selectins. Observations that lymphoma cells disseminate with the same efficiency in normal and selectin-deficient mice suggest that selectins exert their influence at the posthoming stage of metastasis, as does ICAM-1. These results provide definitive evidence that selectins play a significant role at different steps of T-cell lymphoma development.