Purpose: Antibody-directed enzyme prodrug therapy (ADEPT) requires highly selective antibody-mediated delivery of enzyme to tumor. MFE-CP, a multifunctional genetic fusion protein of antibody and enzyme, was designed to achieve this by two mechanisms. First by using a high affinity and high specificity single chain Fv antibody directed to carcinoembryonic antigen. Second by rapid removal of antibody-enzyme from normal tissues by virtue of post-translational mannosylation. The purpose of this paper is to investigate these dual functions in an animal model of pharmacokinetics, pharmacodynamics, toxicity, and efficacy.
Experimental design: MFE-CP was expressed in the yeast Pichia pastoris and purified via an engineered hexahistidine tag. Biodistribution and therapeutic effect of a single ADEPT cycle (1,000 units/kg MFE-CP followed by 70 mg/kg ZD2767P prodrug at 6, 7, and 8 hours) and multiple ADEPT cycles (9-10 cycles within 21-24 days) was studied in established human colon carcinoma xenografts, LS174T, and SW1222.
Results: Selective localization of functional enzyme in tumors and rapid clearance from plasma was observed within 6 hours, resulting in tumor to plasma ratios of 1,400:1 and 339:1, respectively for the LS174T and SW1222 models. A single ADEPT cycle produced reproducible tumor growth delay in both models. Multiple ADEPT cycles significantly enhanced the therapeutic effect of a single cycle in the LS174T xenografts (P = 0.001) and produced regressions in the SW1222 xenografts (P = 0.0001), with minimal toxicity.
Conclusions: MFE-CP fusion protein, in combination with ZD2767P, provides a new and successful ADEPT system, which offers the potential for multiple cycles and antitumor efficacy. These results provide a basis for the next stage in clinical development of ADEPT.