The large VH3 family of human immunoglobulin genes is commonly used throughout B cell ontogeny. However, B cells of the fetus and certain autoantibody-producing clones are restricted to a recurrent subset of VH3 genes, and VH3 B cells are deficient in certain immunodeficiency diseases. In this study, we have sequenced a set of rearranged VH3 genes generated by genomic polymerase chain reaction (PCR) from normal adults and those with common variable immunodeficiency (CVI). In both groups, all cones were readily identifiable with the fetal VH3 subset, and were further distinguished by limited DH motifs and exclusive use of JH4. In CVI, the residual population of VH3 B cells were notable for predominant use of 56p1-like VH genes. All clones displayed sequence divergence (including somatic mutation) with evidence of strong selection against complementarity-determining region (CDR) coding change. A survey of other V gene families indicates that human V gene diversity may be restricted in general by germline mechanisms. These findings suggest that the expressed antibody repertoire in the human adult may be much smaller than anticipated, and selected by processes in part distinct from the paradigm of maximal antigen-binding diversity.