Targeting the aluminum tolerance gene Alt3 region in rye, using rice/rye micro-colinearity

Theor Appl Genet. 2005 Mar;110(5):906-13. doi: 10.1007/s00122-004-1909-0. Epub 2005 Feb 2.

Abstract

Characterization and manipulation of aluminum (Al) tolerance genes offers a solution to Al toxicity problems in crop cultivation on acid soil, which composes approximately 40% of all arable land. By exploiting the rice (Oryza sativa L.)/rye (Secale cereale L.) syntenic relationship, the potential for map-based cloning of genes controlling Al tolerance in rye (the most Al-tolerant cereal) was explored. An attempt to clone an Al tolerance gene (Alt3) from rye was initiated by using DNA markers flanking the rye Alt3 gene, from many cereals. Two rice-derived, PCR-based markers flanking the Alt3 gene, B1 and B4, were used to screen 1,123 plants of a rye F2 population segregating for Alt3. Fifteen recombinant plants were identified. Four additional RFLP markers developed from rice genes/putative genes, spanning 10 kb of a 160-kb rice BAC, were mapped to the Alt3 region. Two rice markers flanked the Alt3 locus at a distance of 0.05 cM, while two others co-segregated with it. The rice/rye micro-colinearity worked very well to delineate and map the Alt3 gene region in rye. A rye fragment suspected to be part of the Alt3 candidate gene was identified, but at this level, the rye/rice microsynteny relationship broke down. Because of sequence differences between rice and rye and the complexity of the rye sequence, we have been unable to clone a full-length candidate gene in rye. Further attempts to clone a full-length rye Alt3 candidate gene will necessitate the creation of a rye large-insert library.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aluminum / toxicity
  • Blotting, Northern
  • Blotting, Southern
  • Chromosome Mapping*
  • Crosses, Genetic
  • DNA Primers
  • Drug Resistance / genetics
  • Genetic Markers / genetics
  • Oryza / genetics*
  • Polymorphism, Restriction Fragment Length
  • Secale / genetics*
  • Synteny / genetics*

Substances

  • DNA Primers
  • Genetic Markers
  • Aluminum