The tetranuclear complex [Fe(III)2(L')(OH)(CH3O)]2, 1, has been synthesised from the reaction of either ferrous [in excess as 4:1 or stoichiometric 2:1 iron(II) : H4L] or ferric ions [4:1 iron(III) : H4L] with the large macrocycle, H4L, using aerobic conditions in methanol in the presence of triethylamine. The structure of 1 was determined by single-crystal X-ray diffraction. These reaction conditions lead to the modification of the original macrocycle through the incorporation of a methylene group between two amine groups to give an imidazolidine ring in (L')4-. The controlled addition of formaldehyde into the reaction system results in a significantly improved yield of 1, suggesting that it is involved in the reaction mechanism. The (L')4- macrocycle binds to two, well-separated, iron(III) centres [Fe(1)...Fe(1a) > 8 A]. Each iron(III) centre is further linked via hydroxy and methoxy bridges to equivalent iron(iii) centres contained in a second macrocycle. Overall this gives a structure containing two {Fe(OH)(CH(3)O)Fe} dimers [Fe(1)...Fe(2)ca. 3.2 A] sandwiched by two (L')4- macrocycles. The complex was further characterised by SQUID magnetic measurements and can be interpreted in terms of two isolated antiferromagnetically coupled Fe(III) dimers (J=-23.75 K).