2-Deoxystreptamine (2-DOS) aminoglycoside antibiotics exert their antimicrobial activities by targeting the decoding region A site of the rRNA and inhibiting protein synthesis. A prokaryotic specificity of action is critical to therapeutic utility of 2-DOS aminoglycosides as antibiotics. Here, isothermal titration calorimetry (ITC) and fluorescence studies are presented that provide insight into the molecular basis for this prokaryotic specificity of action. Specifically, the rRNA binding properties of the 2-DOS aminoglycosides paromomycin and G418 (geneticin) are compared, using both human and Escherichia coli rRNA A site model oligonucleotides as drug targets. Paromomycin and G418 differ with respect to their specificities of action, with only paromomycin exhibiting a specificity for prokaryotic versus human ribosomes. G418 binds to both the human and E. coli rRNA A sites with a markedly lower affinity than paromomycin, with the affinities of both drugs for the human rRNA A site being lower than those they exhibit for the E. coli rRNA A site. Paromomycin induces the destacking of the base at position 1492 (by E. coli numbering) upon binding to the E. coli rRNA A site, but not the human rRNA A site. By contrast, the binding of G418 induces the destacking of base 1492 when either rRNA A site serves as the drug target. In the aggregate, these results suggest that binding-induced base destacking at the rRNA A site is a critical factor in determining the prokaryotic specificity of aminoglycoside action, with binding affinity for the A site being of secondary importance.