Role of SK(Ca) and IK(Ca) in endothelium-dependent hyperpolarizations of the guinea-pig isolated carotid artery

Br J Pharmacol. 2005 Feb;144(4):477-85. doi: 10.1038/sj.bjp.0706003.

Abstract

1. This study was designed to determine whether the endothelium-dependent hyperpolarizations evoked by acetylcholine in guinea-pig carotid artery involve a cytochrome P450 metabolite and whether they are linked to the activation of two distinct populations of endothelial K(Ca) channels, SK(Ca) and IK(Ca.) 2. The membrane potential was recorded in the vascular smooth muscle cells of the guinea-pig isolated carotid artery. All the experiments were performed in the presence of N(omega)-L-nitro arginine (100 microM) and indomethacin (5 microM). 3. Under control conditions (Ca(2+): 2.5 mM), acetylcholine (10 nM to 10 muM) induced a concentration- and endothelium-dependent hyperpolarization of the vascular smooth muscle cells. Two structurally different specific blockers of SK(Ca), apamin (0.5 microM) or UCL 1684 (10 microM), produced a partial but significant inhibition of the hyperpolarization evoked by acetylcholine whereas charybdotoxin (0.1 microM) and TRAM-34 (10 microM), a nonpeptidic and specific blocker of IK(Ca), were ineffective. In contrast, the combinations of apamin plus charybdotoxin, apamin plus TRAM-34 (10 microM) or UCL 1684 (10 microM) plus TRAM-34 (10 microM) virtually abolished the acetylcholine-induced hyperpolarization. 4. In the presence of a combination of apamin and a subeffective dose of TRAM-34 (5 microM), the residual hyperpolarization produced by acetylcholine was not inhibited further by the addition of either an epoxyeicosatrienoic acid antagonist, 14,15-EEZE (10 microM) or the specific blocker of BK(Ca), iberiotoxin (0.1 microM). 5. In presence of 0.5 mM Ca(2+), the hyperpolarization in response to acetylcholine (1 microM) was significantly lower than in 2.5 mM Ca(2+). The EDHF-mediated responses became predominantly sensitive to charybdotoxin or TRAM-34 but resistant to apamin. 6. This investigation shows that the production of a cytochrome P450 metabolite, and the subsequent activation of BK(Ca), is unlikely to contribute to the EDHF-mediated responses in the guinea-pig carotid artery. Furthermore, the EDHF-mediated response involves the activation of both endothelial IK(Ca) and SK(Ca) channels, the activation of either one being able to produce a true hyperpolarization.

MeSH terms

  • Acetylcholine / pharmacology
  • Animals
  • Calcium / pharmacology
  • Carotid Artery, Internal / cytology
  • Carotid Artery, Internal / metabolism
  • Carotid Artery, Internal / physiology*
  • Dose-Response Relationship, Drug
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / metabolism
  • Endothelium, Vascular / physiology*
  • Guinea Pigs
  • In Vitro Techniques
  • Male
  • Membrane Potentials / physiology
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / metabolism
  • Muscle, Smooth, Vascular / physiology*
  • Potassium Channel Blockers / pharmacology
  • Potassium Channels, Calcium-Activated / metabolism*

Substances

  • Potassium Channel Blockers
  • Potassium Channels, Calcium-Activated
  • Acetylcholine
  • Calcium