An immersive virtual reality (IVR) system was used to investigate allocentric spatial memory in a patient (PR) who had selective hippocampal damage, and also in patients who had undergone unilateral temporal lobectomies (17 right TL and 19 left TL), their performance compared against normal control groups. A human analogue of the Olton [Olton (1979). Hippocampus, space, and memory. Behavioural Brain Science, 2, 315] spatial maze was developed, consisting of a virtual room, a central virtual circular table and an array of radially arranged up-turned 'shells.' The participant had to search these shells in turn in order to find a blue 'cube' that would then 'move' to another location and so on, until all the shells had been target locations. Within-search errors could be made when the participants returned to a previously visited location during a search, and between-search errors when they revisited previously successful, but now incorrect locations. PR made significantly more between-search errors than his control group, but showed no increase in within-search errors. The right TL group showed a similar pattern of impairment, but the left TL group showed no impairment. This finding implicates the right hippocampal formation in spatial memory functioning in a scenario in which the visual environment was controlled so as to eliminate extraneous visual cues.