Achieving immortality in the C. elegans germline

Ageing Res Rev. 2005 Jan;4(1):67-82. doi: 10.1016/j.arr.2004.09.002. Epub 2004 Dec 10.

Abstract

Germline immortality is a topic that has intrigued theoretical biologists interested in aging for over a century. The germ cell lineage can be passed from one generation to the next, indefinitely. In contrast, somatic cells are typically only needed for a single generation and are then discarded. Germ cells may, therefore, harbor rejuvenation mechanisms that enable them to proliferate for eons. Such processes are thought to be either absent from or down-regulated in somatic cells, although cell non-autonomous forms of rejuvenation are formally possible. A thorough description of mechanisms that foster eternal youth in germ cells is lacking. The mysteries of germline immortality are being addressed in the nematode Caenorhabditis elegans by studying mutants that reproduce normally for several generations but eventually become sterile. The mortal germline mutants probably become sterile as a consequence of accumulating various forms of heritable cellular damage. Such mutants are abundant, indicating that several different biochemical pathways are required to rejuvenate the germline. Thus, forward genetics should help to define mechanisms that enable the germline to achieve immortality.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aging / genetics*
  • Animals
  • Caenorhabditis elegans / genetics*
  • Germ-Line Mutation / physiology*
  • Longevity / genetics*