Intracellular Ca(2+) plays a central role in controlling lymphocyte function. Nonetheless, critical gaps remain in our understanding of the mechanisms that regulate its concentration. Although Ca(2+)-release-activated calcium (CRAC) channels are the primary Ca(2+) entry pathways in T cells, additional pathways appear to be operative in B cells. Our efforts to delineate these pathways in primary murine B cells reveal that Ca(2+)-permeant nonselective cation channels (NSCCs) operate in a cooperative fashion with CRAC. Interestingly, these non-CRAC channels are selectively activated by mechanical stress, although the mechanism overlaps with BCR-activated pathways, suggesting that they may operate in concert to produce functionally diverse Ca(2+) signals. NSCCs also regulate the membrane potential, which activates integrin-dependent binding of B cells to extracellular matrix elements involved in their trafficking and localization within secondary lymphoid organs. Thus, CRAC and distinct Ca(2+) permeant NSCCs are differentially activated by the BCR and mechanical stimuli and regulate distinct aspects of B cell physiology.