It is a well known fact that stirring keeps particles suspended in fluids. This is apparent, for instance, when shaking medicine flasks, when agitating tea deposits in a mug, or when heavy winds fill the air with dust particles. The commonplace nature of such observations makes it easy to accept that this feature will apply to any natural phenomenon as long as the flow is turbulent enough. This has been the case for phytoplankton in the surface mixed layers of lakes and oceans. The traditional view assumes that an increase in turbulence bears ecological advantages for nonmotile groups like diatoms that, otherwise, would settle in deep and unlit waters. However, this assumption has no theoretical ground, and the experimental results we present here point in the opposite direction. Phytoplankton settling velocity increases when turbulence intensifies from the low to the higher values recorded in the upper mixed layers of lakes and oceans. Consequently, turbulence does not favor phytoplankton remaining in lit waters but is rather an environmental stress that can only be avoided through morphological and/or physiological adaptations.