The rate of coronary blood flow was varied in isolated working rat heart preparations to determine its influence on the rate of glocose utilization, tissue high-energy phosphates, and intracellular pH. A 60% reduction in coronary blood flow resulted in a 30% reduction in oxygen consumption, an accelerated rate of glusoe utilization, lower tissue levels of high-energy phosphate, and higher tissue levels of lactate and H+. Ventricular performance deteriorated as reflected by a decrease in heart rate and peak systolic pressure. Further reductions in coronary blood flow resulted in inhibition of glycolysis, a greater decrease in tissue levels of high-energy phosphates, and higher tissue levels of both lactate and H+. These changes in glycolytic flux, tissue metabolites, and ventricular performance were proportional to the degree of restriction in coronary blood flow. The importance of coronary blood flow and washout of the interstitial space in the maintenance of accelerated glycolytic flux in oxygen-deficient hearts is emphasized. It is concluded that acceleration of ATP production from glycolysis can occur only in the marginally ischemic tissue in the peripheral area of tissue supplied by an occluded artery. The central area of tissue which receives a low rate of coronary blood flow will have a reduced rate of ATP production due to both a lack of oxygen and an inhibition of glycolysis.