Objective: To undertake a full genome-wide screen for Parkinson's disease susceptibility loci.
Methods: A genome-wide linkage study was undertaken in 227 affected sibling pairs from 199 pedigrees with Parkinson's disease. The pedigree sample consisted of 188 pedigrees from five European countries, and 11 from the USA. Individuals were genotyped for 391 microsatellite markers at approximately 10 cM intervals throughout the genome. Multipoint model-free affected sibling pair linkage analyses were carried out using the MLS (maximum LOD score) test.
Results: There were six chromosomal regions with maximum MLS peaks of 1 or greater (pointwise p<0.018). Four of these chromosomal regions appear to be newly identified regions, and the highest MLS values were obtained on chromosomes 11q (MLS = 1.60, at 91 cM, D11S4175) and 7p (MLS = 1.51, at 5 cM, D7S531). The remaining two MLS peaks, on 2p11-q12 and 5q23, are consistent with excess sharing in regions reported by other studies. The highest MLS peak was observed on chromosome 2p11-q12 (MLS = 2.04, between markers D2S2216 and D2S160), within a relatively short distance (approximately 17 cM) from the PARK3 region. Although a stronger support of linkage to this region was observed in the late age of onset subgroup of families, these differences were not significant. The peak on 5q23 (MLS = 1.05, at 130 cM, D5S471) coincides with the region identified by three other genome scans. All peak locations fell within a 10 cM distance.
Conclusions: These stratified linkage analyses suggest linkage heterogeneity within the sample across the 2p11-q12 and 5q23 regions, with these two regions contributing independently to Parkinson's disease susceptibility.