Our laboratory and others have shown an important role of metalloelastase (MMP-12) in the pathogenesis of acute and chronic lung injury. Because chronic asthma is characterized by airway inflammation and alterations in the airway extracellular matrix, we explored the role of metalloelastase in a model of allergic airway inflammation induced by cockroach antigen (CRA). Using MMP-12-deficient mice we found a significant reduction in CRA-induced inflammatory injury, as evidenced by fewer peribronchial leukocytes, significantly less protein in the bronchoalveolar lavage (BAL) fluid, and a significant reduction in the number of infiltrating neutrophils, eosinophils, and macrophages, relative to wild-type mice. Although we did not find a significant reduction in the number of T cells in the injured MMP-12-deficient animals as compared to controls, levels of the chemotactic factors interleukin-5, macrophage inflammatory protein-1 alpha, monocyte chemoattractant protein-1, thymus activation regulated chemokine, and the proinflammatory cytokine tumor necrosis factor-alpha were significantly reduced in the bronchoalveolar lavage fluid of CRA-challenged MMP-12-deficient mice, relative to CRA-challenged control animals. These studies indicate that MMP-12 plays an important proinflammatory role in the development of allergic inflammation in the CRA model. Alterations in the levels of chemotactic factors and other proinflammatory cytokines in the MMP-12-deficient mice may underlie the decrease in leukocyte recruitment into inflamed lungs.