For many species, the presence of a significant social partner can lessen the behavioral and physiological responses to stressful stimuli. This study examined whether a single, individually specific, signature vocalization (phee call) could attenuate the physiological stress response that is induced in marmosets by housing them in short-term social isolation. Utilizing a repeated-measures design, adult marmosets (n=10) were temporarily isolated from their long-term pair mate and exposed to three conditions: signature vocalizations from the pair mate, phee calls from an unfamiliar opposite sex individual, or no auditory stimuli. Levels of urinary cortisol were monitored as a physiological indicator of the stress response. Urinary cortisol levels were also monitored, while subjects remained undisturbed in their home cages to provide baseline levels. Temporarily isolated marmosets showed significantly higher levels of urinary cortisol than undisturbed marmosets. However, the nature of the acoustic stimulus experienced during isolation led to differences in the excretion of urinary cortisol. Isolated marmosets exposed to a familiar pair mate's vocalization showed significantly lower levels of urinary cortisol than when exposed to unfamiliar marmoset vocalizations (P <0.04) or to no auditory stimuli (P <0.03). Neither the duration of pairing nor the quality of relationship in the pair (indexed by spatial proximity scores) predicted the magnitude of reduction in cortisol in the familiar vocalization condition. The results presented here provide the first evidence that a single, individually specific communication signal can decrease the magnitude of a physiological stress response in a manner analogous to the physical presence of a social partner, a process we term "vocal buffering."